

Images of Julia sets that you can trust

João Batista Oliveira (PUC-RS)

Luiz Henrique de Figueiredo (IMPA)

Can we trust this beautiful image?

Julia sets

Let $f: \mathbb{C} \to \mathbb{C}$, $f(z) = z^2 + c$, where $c \in \mathbb{C}$ is fixed.

What is the *dynamics* of f?

What happens with the the *orbit* of $z_0 \in \mathbb{C}$ under f?

$$z_1 = f(z_0), \quad z_2 = f(z_1), \quad \dots, \quad z_n = f(z_{n-1}) = f^{(n)}(z_0)$$

Some orbits stay bounded forever. Other orbits go away to infinity.

Attraction basin of
$$\infty$$
 $A(\infty) = \{z_0 \in \mathbb{C} : |f^{(n)}(z_0)| \to \infty\}$
Julia set of f $J = \partial A(\infty)$
Filled Julia set of f $K = \mathbb{C} \setminus A(\infty)$

The Julia set is usually a fractal and so is elusive to draw.

Pictures usually show the filled Julia set instead.

Popular algorithm for generating images of Julia sets

Crucial observation: If an orbit ever goes outside the circle B of radius $R = \max(|c|, 2)$ centered at the origin, then it goes away to infinity.

Simple algorithm for drawing the filled Julia set K in a region $\Omega \subset \mathbf{C}$:

- Choose a large integer N.
- Lay a grid of pixels over Ω .
- For each pixel in the image:
 - \diamond Compute up to N points of the orbit starting at the pixel center.
 - \diamond If the orbit goes outside B, then paint the pixel white.
 - \diamond If the orbit remains inside B, then paint the pixel black.
- K is the black region, $A(\infty)$ is the white region.

Typical image computed with popular algorithm

No guarantees given:

What happens between pixels?

What happens for larger N?

What about round-off?

White pixels hint at $A(\infty)$

Black pixels may turn white

Border pixels uncertain

Tools for computing guaranteed images of Julia sets

The main tool is interval arithmetic.

Extend $f(z) = z^2 + c$ to F defined on rectangles $Z \subset \mathbf{C}$

$$F(Z) \supseteq f(Z) = \{ f(z) : z \in Z \}$$

Then $F^{(m)}(Z) \supseteq f^{(m)}(Z)$ for all $m \in \mathbb{N}$.

Validating the exterior of K:

If $F^{(m)}(Z)$ is outside B for some m, then *all* orbits starting in Z are unbounded, and so $Z \subseteq A(\infty)$.

Validating the interior of K:

If
$$F^{(m)}(Z) \subseteq F^{(m_0)}(Z)$$
 for $m > m_0$ and $F^{(k)}(Z) \subseteq B$ for all $k \leq m$, then $F^{(k)}(Z) \subseteq B$ for all $k \in \mathbb{N}$, and so $Z \subseteq K$.

These are *computational proofs*!

Validating the interior of K – example

$$c = -1$$
, $Z_k = F^{(k)}(Z)$, $Z = [1.40625, 1.43750] \times [0, 0.03125]$

 $Z_0 \subseteq B, \ldots, Z_5 \subseteq B$ and $Z_5 \subseteq Z_3 \Rightarrow all$ orbits starting at Z remain inside $Z_3 \cup Z_4$ and so $Z \subseteq K$.

In general, check whether Z_k is inside the $Z_0 \cup \ldots \cup Z_{k-1} \subseteq B$, or even inside the union of *previously validated* rectangles.

Recursive, adaptive algorithm:

```
\begin{array}{l} \mathsf{explore}(Z) \colon \\ \mathsf{status} \leftarrow \mathsf{orbit}(Z) \\ \mathsf{if} \ \mathsf{status} = \text{``unbounded''} \\ \mathsf{paint} \ Z \ \mathsf{white} \\ \mathsf{elseif} \ \mathsf{status} = \text{``bounded''} \\ \mathsf{paint} \ Z \ \mathsf{black} \\ \mathsf{elseif} \ \mathsf{diam}(Z) \leq \varepsilon \ \mathsf{then} \\ \mathsf{paint} \ Z \ \mathsf{grey} \\ \mathsf{else} \\ \mathsf{split} \ Z \ \mathsf{into} \ Z_1, \ Z_2, \ Z_3, \ Z_4 \\ \mathsf{explore}(Z_j) \ \mathsf{for} \ j = 1, 2, 3, 4 \end{array}
```

Start with explore (Ω)

Guarantees:

All points in the white region have unbounded orbits.

All points in the black region have bounded orbits.

K is definitely inside the union of the black and grey regions.

 ${\cal J}$ is definitely inside the grey region.

Guarantees:

All points in the white region have unbounded orbits.

All points in the black region have bounded orbits.

K is definitely inside the union of the black and grey regions.

J is definitely inside the grey region.

Guarantees:

All points in the white region have unbounded orbits.

All points in the black region have bounded orbits.

K is definitely inside the union of the black and grey regions.

J is definitely inside the grey region.

Guarantees:

All points in the white region have unbounded orbits.

All points in the black region have bounded orbits.

K is definitely inside the union of the black and grey regions.

J is definitely inside the grey region.

Guarantees:

All points in the white region have unbounded orbits.

All points in the black region have bounded orbits.

K is definitely inside the union of the black and grey regions.

 ${\cal J}$ is definitely inside the grey region.

Are these the first verified pictures of Julia sets?

